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Preface

This pamphlet contains a collection of selected ideas from the mathematical
career of F. S. Cater. In each case we give a reference of a paper or part of a
paper. However, on occasion we do not have a reference so we write a short
note (paper) in this pamphlet.

One purpose of the pamphlet is to gather these ideas together so we do
not have to hunt them down in the literature. We can see the picture as a
whole and identify quickly what we want to read. The best place to read the
pamphlet is in a library where the Real Analysis Exchange and certain other
journals are on the shelf, or by a computer that serves the same purpose.

Most of my career, and these ideas, are in real variables (real analysis)
though there are occasional forays into linear algebra and topology (consult
the short Chapter IV, for example).

The Chapters gather ideas that are most connected. In Chapter I we
consider derivatives and differentiation, and nowhere differentiable functions.
In Chapter II we consider families of continuous functions. For example, this
may include C(X) or some subfamily of C(X) for a topological space X —
in particular when X is a subset of R. In Chapter III we consider absolutely
continuous functions and N-functions (f is an N-function if f maps sets of
measure zero to sets of measure zero). Chapter IV is a short chapter (4
items) on the algebra of matrices. We have real variables again when the
entries in the matrices are real numbers. In Chapter V we have alternative
arguments. These are essentially different from the arguments they replace.
For example, the alternative argument may be much simpler, or much shorter
than the conventional argument. Another possibility is that the alternative
argument requires much less sophisticated background than the conventional
argument. Finally, Chapter VI is called Variety. It consists chiefly of ideas
that we did not see fit to insert in other Chapters. In the first item of Chapter
VI we find that my Erdös number is one.
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Some items could possibly be in more than one Chapter. Many ideas in
my papers were not included because I wanted to reduce the length. Then
too, after many years there is much that may have interested me at one
time, but no longer does. Sorry if I deleted your favorite topic in my papers.
Finally, I selected items with the pamphlet as a whole in mind.

F. S. Cater
Portland, Oregon

August, 2009.
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Chapter I

Derivatives and Differentiation

I.1 A typical nowhere differentiable function

After much experimenting over a period of years, we discovered that the
continuous real valued function

F (x) =
∞∑
n=1

2−n! cos(2(2n)!x)

satisfies the properties:

(i) At each x either D+F (x) = −D−F (x) =∞ or D−F (x) = −D+F (x) =
∞, and the set of x where either equation does not hold is a first
category set of measure zero,

(ii) At each x, [D−F (x), D−F (x)] ∪ [D+F (x), D+F (x)] = [−∞,∞],

(iii) Each of the four sets {x : F ′+(x) = ∞}, {x : F ′+(x) = −∞}, {x :
F ′−(x) = ∞}, {x : F ′−(x) = −∞} contains a perfect set in every inter-
val, and hence has the power of the continuum in every interval.

It is known that in the metric space of continuous functions on [0, 1] under
the uniform norm, functions satisfying (i), (ii) and (iii) form a residual set.
However it is difficult to find a succinct definition of such a function, like
ours. Our paper is F.S. Cater “A typical nowhere differentiable function,”
Canadian Math. Bull. 26(2), 1983, 149-151.

To read more about functions satisfying (i), (ii) and (iii) consult, for ex-
ample, K.M. Garg “On a residual set of continuous functions,” Czechoslovak
Math. Journal 20 (1970), 537-543.
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I.2 Nondifferentiability of a certain sum

Let b > 1 (b is not necessarily an integer) and let cn be any real number for
each index n. Let K(x) denote the distance from x to the nearest integer.
In connection with their own work in the 1990s, A. Baouche and S. Dubuc
inquired about the differential status of the function

F (x) =
∞∑
n=0

K(bnx+ cn)/bn, (b > 1).

In F.S. Cater, “Remark on a function without unilateral derivatives,”
Journal of Math. Analysis and Applications 182 (3), March 1994, 718-721,
we gave a partial answer.

We proved that F has no finite unilateral derivative at any point if b ≥ 10.
At this writing, I do not know what the status of F is for 1 < b < 10.

I.3 A derivative often zero and discontinuous

We give a constructive definition of a derivative h on [0, 1] that is discontin-
uous almost everywhere on [0, 1] but vanishes on a set of positive measure in
each subinterval of [0, 1]. Our paper is F.S. Cater “A derivative often zero
and discontinuous,” Real Analysis Exchange 11, (1985-86), 265-270.

It was written in reply to Clifford Weil “The space of bounded deriva-
tives,” Real Analysis Exchange 3, (1977-78), 38-41, where a category argu-
ment was used to prove the existence of a derivative on [0, 1] that vanishes
on a dense subset of [0, 1] but is nonzero almost everywhere.

I.4 An increasing continuous function with

Dini derivates 0 and ∞
In F.S. Cater “On the Dini derivates of a particular function,” Real Analysis
Exchange 25 (1), 1999-2000, 1-4, we constructed a continuous strictly increas-
ing function f such that at each point x, either D+f(x) = 0 or D+f(x) =∞,
and at each point x, either D−f(x) = 0 or D−f(x) =∞. Moreover, 0 or ∞
is a derivate (left or right) at each point.
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I.5 Constructing nondifferentiable functions

from concave functions

Let (an) be a sequence of nonnegative real numbers such that
∑∞

n an <∞.
Let (bn) be a strictly increasing sequence of positive numbers such that bn
divides bn+1 for each n, and (anbn) does not converge to zero.

Let f be a continuous function mapping the real line onto the interval
[0, 1] such that f(1) = 1, f(0) = f(2) = 0, and f is concave down on the
interval [0, 2]. Let f(x+ 2) = f(x) for each x.

In F.S. Cater, “Constructing nowhere differentiable functions from convex
functions,” Real Analysis Exchange 28 (2), 2002-2003, 617-622, we proved
that

∞∑
j=1

ajf(bjx)

has a finite left or right derivative at no point.
In this way, we can construct nowhere differentiable functions out of con-

cave (and convex functions. Several examples were offered.
Later it was pointed out to me that I had inadvertently interchanged

the definitions of “convex” and “concave”in the paper. Sorry about that. I
always thought that a bump in the road

��
was convex, but a pot

hole in the road � was concave. No matter.

I.6 Sums of jump functions

By a jump function centered at a point x in R we mean a real functions on
R, constant on the intervals (−∞, x) and (x,∞) such that

f(x−) ≤ f(x) ≤ f(x+) and f(x−) < f(x+).

In G. Piranian “The derivative of a monotone discontinuous function,”
Proc. of the Amer. Math. Soc, 16(2), 1965, 243-244, George Piranian proved
that if S is a countable Gδ-set in R, then there exists a nondecreasing function
f on R with infinite derivative at each point in S and zero derivative at each
point not in S. He made f the sum of jump functions centered at the points
in S. Thus f was also discontinuous at each point of S in his construction.

In F.S. Cater “On functions differentiable on complements of countable
sets,” Real Analysis Exchange, 32(2), 2006-2007, 527-536, we proved that if g
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is a nondecreasing bounded function with zero derivative at all but countable
many points, and g has infinite derivative at every other point, then g can
be expressed as the sum of (countably many) jump functions. Furthermore,
the set of all points where g has infinite derivative is necessarily a nowhere
dense Gδ-set.

For example, there exists no nondecreasing function g, discontinuous at
every rational point, that has zero derivative at every irrational point.

I.7 On the range of a real function

Let f be a real function on R, and let {Iv} denote a family of intervals
covering a set S such that m(S ∩ Iv) ≤ m(f(S ∩ Iv)) for each Iv. (Here m
denotes Lebesgue outer measure.) In F.S. Cater, “Note on the outer measures
of images of sets,” Real Analysis Exchange, 26(2), 2000-2001, 827-830, we
proved that m(f(S)) ≤ 2m(S). We showed by example that no coefficient
less than 2 will suffice here in general.

Observe that this does not necessarily involve derivatives.

I.8 Using derivates to partition R

In this item we use derivates of a function to give a constructive definition
of a partition of R into continuum many Fσδ-sets, each of which meets every
subinterval of R in continuum many points. We do not have a paper on
this construction so we write it here. We do not use or need the Continuum
Hypothesis.

Let f be a continuous nondecreasing functions from [0, 1] onto [0, 1] that
has zero derivative almost everywhere. For each n positive, negative or zero
and x ∈ [0, 1], put

f0(n+ x) = n+ f(x).

Then f0 is a continuous nondecreasing function from R onto R with zero
derivative almost everywhere. Put

H(x) =
∞∑
n=0

2−nf0(nx).
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By the “other” Fubini Theorem (consult (17.18) of Hewitt & Stromberg,
Real and Abstract Analysis, Springer, New York, 1965), H ′ = 0 almost ev-
erywhere. Moreover H is strictly increasing on R.

For each extended real number r, 0 ≤ r ≤ ∞, put

Tr = {x : D+H(x) = r}.

The Tr apparently form a partition of R composed of continuum many
sets. It remains to prove that the desired hypotheses are satisfied.

Lemma 1. For each extended real number r, 0 < r <∞, Tr meets every
interval in continuum many points.

Proof. The complement of T0 has measure zero, so the set

H{x : 0 < D+H(x) <∞}

has measure zero. Because D+H vanishes on T0 it follows that the set

H{x : D+H(x) = 0}

also has measure zero. We deduce that for any interval I,

H{x ∈ I : D+H(x) =∞}

has positive measure. It follows that I ∩T∞ has the power of the continuum.
But the complement of T0 has measure zero, so I ∩ T0 also has the power of
the continuum.

So now let r be a real number 0 < r < ∞, and let I be any interval.
Let g be a continuous function on R such that g(x) = H(x) for x ∈ I, and
g′(x) > r for x outside the closure of I.

It follows that D+g > r on a dense subset of R. There is evidently a
point x0 ∈ I where

D+g(x0) = D+H(x0) = 0 < r

because T0 is dense in R. It follows from Anthony Morse “Dini derivates of
a continuous function”, Proc. Amer. Math. Soc, 5 (1954), 126-130, that
{x : D+g(x) = r} has continuum many points. It follows that

I ∩ Tr = {x ∈ I : D+H(x) = r}

has continuum many points.
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To complete the argument, we need one more well-known Lemma. We
include a proof of it for any one who wants one written here.

Lemma 2. For each extended real number r, 0 < r <∞, the set Tr is an
Fσδ-subset of R.

Proof. Let r be a positive real number and let n be a positive integer.
Then it follows that the set

Sn = {x : there exists a y > x such that (H(y)−H(x)) > r(y−x), 0 < y−x < n−1}

is open. Then the set Pr = ∩∞n=1Sn is a Gδ-set. Clearly Pr contains the set
{x : D+H(x) > r} and Pr is disjoint from the set {x : D+H(x) < r}. It
follows that

T∞ =
∞⋂
k=1

Pk

is a Gδ-set and consequently T∞ is also an Fσδ-set. Furthermore

Tr =

[
∞⋂
k=1

Pr−k−1

]
\

[
∞⋃
k=1

Pr+k−1

]

is a Gδ-set minus a Gδσ-set, and in turn is the intersection of a Gδ-set with
an Fσδ-set. Finally, Tr is the intersection of two Fσδ-sets and is an Fσδ-set.

Observe that the function f completely determines the partition in this
argument. Consequently, when f is Lebesgue’s singular function, the def-
inition of f is constructive and the definition of the partition is likewise
constructive.

You also may be interested in the paper Amer. Math. Monthly 91 (9),
November 1984, 564-566, in which we partitioned (0, 1) into countably many
measurable sets that each meet every subinterval of (0, 1) in a second category
set of positive measure. However, we cannot make these measurable sets all
Borel sets.
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Chapter II

Families of continuous functions

II.1 Function lattices.

Let U be a locally compact Hausdorff space that is not compact. Let L(U)
denote the family of all continuous real valued functions f on U such that for
some nonzero number p, depending on f , f−p vanishes at infinity. Now let S
be a locally compact Hausdorff space. Define T (S) to be C(S) if S is compact,
and define T (S) to be L(S) if S is not compact. In F.S. Cater “Some lattices
of continuous functions on locally compact spaces”, Real Analysis Exchange
33(2), 2007-2008, 285-290, we proved that for any locally compact spaces S1

and S2, S1 and S2 are homeomorphic spaces if and only if T (S1) and T (S2)
are isomorphic lattices.

Thus T (S) assumes a similar role for locally compact spaces S that C(X)
assumes for compact spaces X.

II.2 Nonlinear mappings

Let X be a compact Hausdorff space, and let D(X) denote the family of all
continuous functions f on X satisfying 0 ≤ f ≤ 1. In S. Cater “A nonlinear
generalization of a theorem on function algebras,” Amer. Math. Monthly
74 (#4), June-July, 1967, 682-685, we proved the following result.

Theorem 1. Let X be a compact Hausdorff space and let u be a mapping
of D(X) into the unit interval [0, 1] such that
(1) u(fg) = u(f)u(g) for f, g ∈ D(X),
(2) u(1− f) = 1− u(f) for f ∈ D(X).
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Then there is a unique point x0 ∈ X such that u(f) = f(x0) for all
f ∈ D(X).

This result will be used in the next Item.
(Note: At that time I was known as S. Cater, an exaggerated attempt at

brevity on my part. Now there exists another S. Cater, about whom I know
nothing.)

II.3 Function rings

For a compact Hausdorffspace X let C(X) denote the ring of continuous func-
tions on X. For a locally compact, noncompact space Y let G(Y ) denote the
ring of continuous functions f on Y such that there exists an integer p, de-
pending on f , for which f−p vanishes at infinity on Y . For a locally compact
space W , let P (W ) = C(W ) if W is compact, and let P (W ) = G(W ) if W
is not compact. In Frank S. Cater “Variations on a theorem on rings of con-
tinuous functions,” Real Analysis Exchange 24 (2), 1998-1999, 579-588, we
proved that locally compact spaces W1 and W2 are homeomorphic spaces if
and only if P (W1) and P (W2) are isomorphic rings.

Thus the ring P (W ) plays a similar role for locally compact W that the
ring C(X) plays for compact X.

Finally, for real numbers a and b put a ∗ b = ab − a. All this works just
as well when the ring isomorphisms are replaced by bijections φ preserving
the one operation ∗:

φ(f(x) ∗ g(x)) = φ(f(x)) ∗ φ(g(x)).

One typo: on page 583, “homomorphism” should be “homeomorphism.”
(This time they called me “Frank S. Cater” which is the name I use in

business.)

II.4 Spaces of functions

In F.S.Cater “On sparse subspaces of C[0, 1],” Real Analysis Exchange 31
(1), 2005-2006, 7-12, we proved that there exists a subspace H of C[0, 1]
under the uniform metric that is homeomorphic to the full space C[0, 1],
even though H consists only of infinitely many times differentiable members
of C[0, 1]. Likewise, there is a subspace H1 of C[0, 1], composed only of
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singular functions of bounded variation, such that H1 is homeomorphic to
C[0, 1]. Furthermore, there exists a subspace H2 of C[0, 1], composed only of
nowhere differentiable functions, such that H2 is homeomorphic to C[0, 1].

II.5 Lattice automorphisms

Let φ be a lattice automorphism of the lattice C(X) where X is a compact
Hausdorff space. Thus for f , g ∈ C(X), f−g ≥ 0 if and only if φ(f)−φ(g) ≥
0. We say that φ is increasing provided for f , g ∈ C(X), f−g never vanishes
on X if and only if φ(f) − φ(g) never vanishes on X. There are compact
Hausdorff spacesX that admit lattice automorphisms that are not increasing.
One such space is the Stone-Čech compactification of the real line.

In Theorem IV of F.S. Cater “Remark on a result of Kaplansky concern-
ing C(X),” Michigan Math. Journal12(1965),97-103, we proved that
every lattice automorphism must be increasing provided X is either locally
connected or sequentially compact. I was surprised by the role of “locally
connected” but I was not surprised by the role of “sequentially compact.”

We deduce that the Stone-Čech compactification of the real line is con-
nected but not locally connected.

(Note: After publication it was pointed out to me that there was a prob-
lem with Theorem II and its proof in the paper cited above. In retrospect,
I should have written a short note on Theorem IV instead of the Michigan
paper. Sorry. Theorem IV and its proof depend in no way on Theorem II.)

II.6 Functions with frequently infinite deriva-

tives

In F.S. Cater, “On infinite unilateral derivatives,” Real Analysis Exchange
33(2), 2007-2008, 309-316, we proved that for any continuous function f on
[a, b], there exists a continuous function K on [a, b] such that K − f has zero
derivative almost everywhere, and every subinterval I contains continuum
many points where K ′+ = ∞, continuum many points where K ′− = ∞,
continuum many points where K ′+ = −∞, and continuum many points where
K ′− = −∞. Note that K and f have the same Dini derivates at almost every
point. For certain functions f , for example, N -functions and functions of
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bounded variation, K can be selected so that the infinite derivatives are
bilateral.

For more about N -functions, consult Chapter III.

II.7 On derivatives of functions of bounded

variation

This Item is a supplement to our paper F.S. Cater “On the derivatives of
functions of bounded variation,” Real Analysis Exchange 26(2), 2000-2001,
923-932.

Let F denote the family of all continuous functions of bounded variation
on the interval [0, 1]. The uniform metric is not complete on F . A better
choice is the complete metric w for which

w(f, g) = |f(0)− g(0)|+ total variation of f − g on [0, 1].

We say that something is true of a “typical” function in F if the set of
all functions in F for which it is not true is a first category subset of F .

For consistency, theorem III in our paper should read:
“The restriction of the derivative of a typical function f to its set of points of
differentiability is unbounded in every subinterval”. Indeed we proved that
for typical functions f , the range of f ′ on any subinterval is dense in R.

To show that the absolute value bars can be removed in theorem I of our
paper, argue as follows.

Proof. Let f ∈ F, ε > 0, and let (a, b) be any subinterval of [0, 1].
We use Lemma 2 of our paper F.S. Cater “On infinite unilateral deriva-

tives”, Real Analysis Exchange 33(2), 2007/2008, pp. 309-216, to construct
a continuous nondecreasing singular function g ∈ F of total variation 2ε,
and vanishing at 0, such that for any h ∈ F with total variation less than
ε, (g+ h)′(x) =∞ at continuum many points x of (a, b) at which f is differ-
entiable. Then (f, g + h)′(x) = ∞ at all such points x. Let Ka,b denote the
family of all functions k ∈ F for which k′ =∞ at continuum many points in
(a, b). It follows that f +g is an interior point of Ka,b. Now w(f +g, f) = 2ε,
so Ka,b contains an open dense subset of F because ε and f were arbitrary.

Let a, b run over the rational numbers in (0, 1). Then

K =
⋂

a,b Ka,b
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has a first category complement in F . But any p ∈ K satisfies p′ = ∞ at
continuum many points in any subinterval of [0, 1]. The corresponding result
holds for −∞.

We continue as follows. Fix an index n > 0, and typical f ∈ F . For
any x satisfying f ′(x) = ∞ select an interval (c, d) such that f(d) − f(c) >
d−c, x ∈ (c, d) and d−c < n−1. Let Sn denote the union of all such intervals
as x runs over all points where f ′ =∞ and n > 0. Let Tn be defined in the
same way where f(d)− f(c) < −(d− c) and f ′(x) = −∞. It follows that⋂

n(Sn ∩ Tn)

is a residual subset of [0, 1] and f can have no derivative, finite or infinite,
at any point of this set. Finally, a residual subset of [0, 1] must meet each
subinterval of [0, 1] in continuum many points.

We recapitulate:
For a typical function f in F and any subinterval I of [0, 1], f ′ = ∞ at
continuum many points of I, f ′ = −∞ at continuum many points of I, and
there are continuum many points of I where f has no derivative, finite or
infinite. Of course every f ∈ F is differentiable almost everywhere.

In the proof of theorem I in our paper we seemed to need the Continuum
Hypothesis. It is not needed here.

You also might be interested in our paper “Most monotone functions are
not singular,” �American Math. Monthly 89(7), August-September, 1982, pp.
466-469.
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Chapter III

Absolute continuity and the
Lusin Property (N)

III.1 An equation for absolute continuity

Let f be a continuous function of bounded variation on [a, b] and let L denote
the length of f [a, b]. For each x ∈ [a, b] let k(x) = 0 if the set

{t ∈ [a, b] : f(t) = f(x)}

is infinite, and k(x) = 1/N if this set has N elements.
In Theorem 16 of F.S. Cater “On change of variables in integration,”

Eötvös (vols. XXII-XXIII), 1979-1980, 11-22, we proved that f is absolutely
continuous on [a, b] if and only if∫ b

a

k(x)|f ′(x)|dx = L.

Thus we express the absolute continuity of a continuous function f of
bounded variation in terms of an equation involving f ′.

A better known necessary and sufficient condition is that f be an N -
function on [a, b], that is, f , maps sets of measure zero to sets of measure
zero. This is called the Banach-Zarecki Theorem.
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III.2 Summable and absolutely continuous func-

tions

The Banach-Zarecki Theorem states that a necessary and sufficient condition
for a continuous function f of bounded variation to be absolutely continuous
on an interval is that f be an N -function on that interval.

In F.S. Cater “Some variations on the Banach-Zarecki Theorem,” Real
Analysis Exchange, 32(2),547-552, we proved:

Corollary 1. Let f be a continuous N -function differentiable almost every-
where on [a, b]. Then f is absolutely continuous on [a, b] if and only if there
exists a summable function g on [a, b] such that g ≥ f ′ almost everywhere
on [a, b].

Corollary 1 is a tolerable variation of (6.9), Chapter IX in S. Saks, Theory
of the Integral, Second revised edition, Dover, New York, 1964. We hope it
is of use and of interest in University teaching.

III.3 Knot points and N-functions

By a knot point p of a function f , we mean a point p at which the two upper
Dini derivates of f are ∞, and the two lower Dini derivates of f are −∞. In
F.S. Cater “On continuous N -functions and an example of Mazurkiewicz”,
Real Analysis Exchange, 30(1), 2004-2005, 201-206, we proved:

Corollary 3. Let f be a continuous function that is not an N -function
on [a, b], let K be the set of all knot points of f , and let f(K) have measure
zero. Then for any everywhere differentiable function g on [a, b], f + g is not
an N -function on [a, b].

As an example, let F be a monotone nonconstant continuous function on
[0, 1] with F ′ = 0 almost everywhere. Then for any everywhere differentiable
function g on [0, 1], F + g is not an N=function on [0, 1].

Mazurkiewicz constructed a continuous function M(x) such that M(x)+x
is an N -function but M(x) is not. Then M(K) does not have measure zero.

For more about knot points, consult the work of K.M. Garg.
In this item we discussed a nexus between knot points and Masurkiewicz-

type functions.
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III.4 Completing an N-function example

In the Real Analysis Exchange, Summer Symposium 2002, p. 411, we posed
the following research question.

Question. Given a nonconstant continuous N -function f , is there a con-
tinuous N -function g, depending on f , such that the sum f + g is not an
N -function.

The question was answered in the affirmative in Dusan Pokorny “On
Lusin’s (N)-property of the sum of two functions,” Real Analysis Exchange,
33(1), 2007-2008, 23-28.

So Pokorny’s Theorem generalizes the Masurkiewicz example from linear
functions to continuous functions.

We had a hand in this because we posed the research problem in print.

III.5 Compact sets and N-functions

Put f(x) = x in Lemma 1 of F.S. Cater “On continuous N -functions and
an example of Mazurkiewicz,” Real Analysis Exchange, 30(1), 2004-2005,
201-206, and obtain

Lemma 1. Let h be a continuous function on [a, b] and let S ⊂ [a, b] be a
set of measure zero such that h(S) does not have measure zero. Then there
exists a compact subset T of S closure such that T has measure zero but
h(T ) has positive measure.

So for a continuous function h to be an N -function it suffices that h maps
compact sets of measure zero to sets of measure zero.

We will use this Lemma in the next Item.

III.6 N-functions relative to a closed set

Say that a function f is an N -function relative to the set P if f maps any
subset of P of measure zero to a set of measure zero.

Here we pose the following question: For any uncountable closed set P of
measure zero, do there exist continuous functions F and G on R, depending
on P , that are N -functions relative to R such that the sum F +G is not an
N -function relative to P? We will answer this in the affirmative. But we did
not publish it elsewhere, so we write it here.
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We start with two continuous N -functions f and g with respect to R
such that f + g is not an N -function with respect to R. It follows from Item
III(5) that there is an uncountable compact set X of measure zero such that
(f + g)(X) has positive measure. It follows that there is a perfect subset
X1 of X such that X\X1 is at most a countable set. Thus (f + g)(X1) has
positive measure.

Now P has a closed bounded subset P0 that is also uncountable. There
is a compact perfect subset P1 of P0 such that P0\P1 is at most a countable
set. Between any two complementary intervals of P1 there are other comple-
mentary intervals of P1. Likewise, between any two complementary intervals
of X1 there are other complementary intervals of X1.

It follows that there is an order preserving bijection K of the set of all
complementary intervals of P1 onto the set of all complementary intervals of
X1. In an obvious manner K gives rise to an increasing function k of the
complement of P1 onto the complement of X1 such that k is linear on each
component of the complement of P1.

In the natural way we extend k to an increasing homeomorphism of R
onto R by assigning to each x ∈ P1 the unique point k(x) in X1 that makes k
everywhere increasing on R. Note that k then, is an N -function with respect
to each component of the complement of P1, and an N -function with respect
P1 because X1 has measure zero. It follows that k is an N -functions with
respect to R. Define the composite functions on R

F = f ∗ k, G = g ∗ k.

Now F and G are N -functions with respect to R because f , g and k are.
But

F +G = (f + g) ∗ k

maps the set P1 of measure zero to the set (f + g)(X1) that has positive
measure. It follows that F +G is not an N -function with respect to P1 or P .

REMARK. It can be shown (Item VI(12)) that any closed uncountable
set contains an uncountable closed subset of measure zero. Thus it suffices
in our argument that P be any uncountable closed set. I do not know what,
if anything, can be concluded if P is only an uncountable set.
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Chapter IV

Matrix algebra

All matrices are square, n by n, and the entries are in a commutative field,
F .

IV.1 The matrix factor theorem

In Lemma 8 of F.S. Cater ”Products of central collineations,” Linear algebra
and its applications 19 (1978), 251-274, we have a result I call the Matrix
factor theorem. It can be described as follows:

Let M be a nonsingular n by n nonscalar matrix (not the product of
a scalar with the identity matrix I). Let x1, x2, ...xn be scalars such that
x1x2..., xn = detM . Then there exist matrices M1,M2, ...,Mn such that

(1) the product M1M2...Mn is similar to the matrix M ,
(2) detMj = xj for j = 1, 2, ..., n,
(3) for each index j = 1, 2, ..., n, all the nonzero entries of Mj − I lie in the
j − th column of Mj − I.

The developments of Lemmas 4 and 6 should be clearer so we will give
other proofs here.

Let M be a nonsingular nonscalar matrix. Our arguments will be in a
sequence of steps.

Step 1. M is similar to a nondiagonal matrix.
Proof. Let aij denote the i-th row, j-th column entry of M . Let M be

diagonal. There is an index i with aii 6= a11 because M is not a scalar matrix.
Then M is similar to the matrix found by adding the i-th row of M to the
first row of M , then subtracting the first column from the i-th column. The
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pattern is suggested by (
1 1
0 1

)
M

(
1 −1
0 1

)
.

Step 2. M is similar to a matrix whose 1-st row is not a scalar multiple
of (1, 0, ..., 0).

Proof. In view of Step 1, we assume that M is not a diagonal. Say aij 6= 0
where i 6= j. Then M is similar to the matrix found by interchanging the
i-th and j-th rows of M , then interchanging the i-th and j-th columns. The
result is a matrix with an entry equal to the value aij in the first row but not
in the first column. The pattern is suggested by(

0 1
1 0

)
M

(
0 1
1 0

)
.

Step 3. Let p be any nonzero scalar in F . Then M is similar to a matrix
whose first row is (p, p, 0, ..., 0).

Proof. In view of Step 2, we can assume that for some index j > 1,
a1j 6= 0. We multiply the first row of M by p/a1j and then multiply the first
column by a1j/p, to find that M is similar to a matrix with p in the first row
and j-th column. The pattern is suggested by(

p/alj 0
0 1

)
M

(
alj/p 0

0 1

)
.

We add (p − a11)/p times the j-th column to the first column and then
add (a11 − p)/p times the first row to the j-th row to find that M is similar
to a matrix with p in the first row first column entry and p in the first row
j-th column entry. If j > 2, we use the same procedure with the second
column in place of the first column to find that M is similar to a matrix
with p in the first row, first and second column entries. We proceed with
the second column in place of the j-th column to convert all the first row
entries after the second to zero. So M is similar to a matrix whose first row
is (p, p, 0, ..., 0). This is essentially Lemma 6 in our paper.

Step 4. Let n = 2. Let x1, x2 ∈ F such that x1x2 = detM . Then M is
similar to a matrix product of the form(

x1 0√
1

)(
1
√

0 x2

)
.
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Proof. By Step 6, we can assume that

M =

(
x1 x1
a b

)
.

Then

M =

(
x1 0
a 1

)(
1 1
0 b− a

)
.

Clearly b− a = x2 because x1x2 = detM . This is essentially Lemma 4 in
our paper.

Take Lemmas 5, 7, 8 and 9 as they appear in our paper. Lemma 8, then,
is essentially the matrix factor theorem. We used Lemma 9 to give an answer
to a question posed by Radjavi.

Here are two typos in our paper. On page 256, the matrix In−1 should
be In−2. On page 254, the first matrix appearing after the word “proof” can
be better written. But this is obviated by the arguments here.

Here are some corollaries not included in our paper.
Corollary 1. Let A and B be nonsingular, nonscalar matrices that are

not similar, but such that detA = detB. Let |F | > 3. Then A and B can
be factored

A1A2...An = A, B1B2...Bn = B

such that Aj is similar to Bj for j = 1, 2, ..., n.
To see this, observe that for u 6= 0, u 6= 1, diagonal (u, 1, ..., 1) is similar

to any matrix C with detC = u provided all the nonzero entries in C − I lie
in one column.

Corollary 2. Let M be a nonsingular matrix and let c ∈ F such that c 6= 1
and cn = detM . Then there exist mutually similar matrices M1,M2, ...,Mn

such that M = M1M2...Mn.
We leave the proof.
Corollary 3. Let M be a nonsingular matrix and let F be algebraically

closed. Then there is a scalar s such that sM = M1M2...Mn where each Mj
2

is the identity matrix.
We leave the proof.
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IV.2 Determinants and scalar mappings

Let p be an mapping from F to F . Let φ be the mapping from the set of n
by n matrices into F as follows: For matrix A,

φ(A) = p(detA).

Observe the φ(AB) = φ(BA) because

det(AB) = (detA)(detB) = (detB)(detA) = det(BA).

In S. Cater, “Scalar valued mappings of square matrices,” Amer. Math.
Monthly 70(2), 1963, pp. 163-169, we proved that the following are equivalent
for a mapping φ from the set of n by n matrices into F

(1) φ(ABC) = φ(CBA) for any matrices A, B, C,
(2) there exists a mapping p from F to F such that for all matrices A,

φ(A) = p(detA).

Moreover, φ is multiplicative if and only if p is multiplicative.
This paper was given an honor of sorts. It was reprinted in the Raymond

W. Brink selected mathematical papers, volume 3, Algebra, pp. 321-327,
published by the Mathematical Association of America, 1977.

IV.3 On multiplicative mappings

IV(3) was a precursor to IV(2). This time φ1 and φ2 are each multiplicative
mappings from the set of n by n matrices to F , the field of complex numbers,
that preserves conjugation:

φi(AB) = φi(A)φi(B), φi(A)− = φi(A
−),

for all A and B. Let φ1(e
1+iI) = φ2(e

1+iI), In S. Cater, “On multiplicative
mappings of operators”, Proc. of the Amer. Math. Soc. 13(1), 1962, pp.
55-58, we proved that φ1 = φ2 under these hypotheses. Moreover we proved
that φ1(A) = detA if φ1(e

1+iI) = en+ni.
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IV.4 Text Book

You may be interested in our linear algebra text book Frank S. Cater, Lec-
tures on real and complex vector spaces, W. B. Saunders Company, Philadel-
phia, 1966.

It went out of print about 1971, but it still can be found in many university
libraries. It sold few copies – probably fewer than a thousand – but it did
receive good reviews. I wonder if it would have sold better if we had not
written the functions on the right and the variables on the left. This notation
was all the rage at that time. Note that in the reference in IV(2), the same
notation was used.

Fortunately this notation is not so popular today. My feeling is that it
causes confusion unless it is used in all branches of mathematics, not just
linear algebra. In retrospect, I regret using that notation. I know it caused
me confusion in teaching.
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Chapter V

Alternative arguments

In this chapter we construct proofs of well-known results that are different
from the usual proofs given. We try to make our arguments easier (simpler)
than the accepted arguments and/or employ more elementary means (first
principles). We hope to provide some worthwhile insights into these results
as well.

V.1 On infinite unilateral derivatives

One result of S. Saks is that in the complete metric space C[0, 1] under the
sup norm, the set of functions that have right (left) derivative ∞(−∞) at
continuum many points in [0,1] form a residual subset of C[0, 1]. Shorter
proofs than his had been given, but they required sophisticated results. In
F. S. Cater “An elementary proof of a theorem on unilateral derivatives,”
Canadian Math. Bull. 29(3), 1986, pp. 341-343, we provided a relatively
short argument using first principles.

We used the same technique to give a short proof that the functions
in C[0, 1] that have continuum many knot points form a residual subset of
C[0, 1].

V.2 A theorem of de la Vallée Poussin

We give a reasonable short proof from first principles of a classical theorem
attributed to de la Vallée Poussin.
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Theorem. Let f be a real valued function of bounded variation on the
interval [a, b] and let V (x) denote the total variation of f on [a, x]. Let m
denote Lebesgue outer measure. Then there exists a set N ⊂ [a, b] such that

m(V (N)) = m(f(N)) = m(N) = 0

such that for any x ∈ [a, b]\N , f ′(x) and V ′(x) exist, finite or infinite, and
furthermore V ′(x) = |f ′(x)|.

Note that m(N) = 0 is easy to acquire from school analysis, but

m(N) = m(f(N)) = m(V (N)) = 0

is much harder to acquire. Our paper is F. S. Cater “A new elementary
proof of a theorem of de la Vallée Poussin,” Real Analysis Exchange 27(1),
2001/2002, pp. 393-396.

We hope our argument will make this classical Theorem more accessible
in the Universities.

V.3 Geodesics on spheres in Hilbert space

Here we make a foray into geometry. Let S be a sphere in a Euclidean space
of dimension greater then 2, or a real Hilbert space, and let A and B be two
points on S that are not antipodal. We give an elementary geometry proof
that the shortest path on S joining points A and B lies on the great circle
joining A and B (that is, the intersection of S with the plane through A, B
and the center of S.)

We consider all the continuous rectifiable curves on S, continuously dif-
ferentiable or not. We do not need geometric curvature of any kind. Our
paper is:

F. S. Cater “On the curves of minimal length on spheres in real Hilbert
spaces,” Real Analysis Exchange 25(2), 1999/2000, pp. 781-786.

This work was done for teacher education people in our Department who
wanted a proof in 3-space without the use of curvature.

V.4 Open mappings

We use real variable arguments to prove the theorem in complex variables,
that the image of a nowhere constant analytic function on an open region
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is an open set. Such a function must be an open mapping, that is, maps
open sets to open sets. Our paper is: F. S. Cater “An elementary proof
that analytic functions are open mappings,” Real Analysis Exchange 27(1),
2001/2002, pp. 389-392. (One typo: In the statement of Lemma 1, “. . . f(0)
and the set f(B) . . . ” should be “. . . f(0) to the set f(B) . . . ”. My fault –
sorry.)

We used our technique to find yet another proof of the fundamental The-
orem of Algebra.

Real variable proofs of complex variable theorems are especially difficult.
For our purposes we regarded an analytic function to be a function that
coincides locally with the sum of a power series about each point. For more
about real analysis proofs of results concerning complex valued functions,
consult: F. S. Cater “Another application of Rolle’s theorem,” Real Analysis
Exchange 30(2), 2004/2005, pp. 795-798.

V.5 On finitely generated abelian groups

In “Uniqueness of the decomposition of finite abelian groups: a simple proof,”
Mathematics Magazine 71(1), February 1998, pp. 50-52, we gave an elemen-
tary proof (from first principles) of the uniqueness of the decomposition of
finite abelian groups. This can be expressed as follows:

Theorem. Let G be a finite abelian group. Let

G = G1 ⊕G2 ⊕ · · · ⊕Gm = H1 ⊕H2 ⊕ · · · ⊕Hn

be two decompositions of G; that is, all the Gi and Hi are cyclic subgroups
of G, and order Gi divides order Gi+1 for 1 ≤ i ≤ m−1, and order Hi divides
order Hi+1 for 1 ≤ i ≤ n − 1. Then n = m and order Gi = order H1 for
1 ≤ i ≤ n.

The proof usually requires considerable machinery, but we gave a short
proof using only first principles. There was one typo: on the last page, “Case
2. Let r < s” . . . should be “Case 2. Let r > s” . . . . My fault–sorry.

ADDENDUM.
We prove the following
Lemma. Let K be a torsion free abelian group; that is, every nonzero

element in K has infinite order. Let

K = K1 ⊕K2 ⊕ · · · ⊕Kn = H1 ⊕H2 ⊕ · · · ⊕Hm
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where each Ki and Hi is an infinite cyclic subgroup of K. Then n = m.
Proof. We argue by contradiction. Let n < m. We will employ vector

space theory. Let v1, v2, . . . , vn be an ordered basis of an n-dimensional vector
space V over the field of rational numbers. Let K be the family of vectors
(elements) of the form

∑n
i=1 aivi where each ai is an integer. Then K is a

subgroup of the additive group of V . Moreover K is the direct sum of n
infinite cyclic groups of the form {avi} for integers a and each i = 1, 2, . . . , n.

By hypothesis, K is also the direct sum ofm infinite cyclic groupsH1, H2, . . . , Hm.
For each i = 1, 2, . . . ,m select a nonzero element ui in Hi. Then there exist
rational numbers b1, b2, . . . , bm, not all zero, such that

m∑
i=1

biui = 0 (1)

because m exceeds the dimension of V . Let s be the product of all the
integer denominators of the rational numbers bi. Hence sbi is an integer for
i = 1, 2 . . . ,m, not all zero. Add the left side of (1) with itself enough times
to obtain

s

(
m∑
i=1

biui

)
=

m∑
i=1

(sbi)ui = 0, (2)

not all sbi = 0. But (sbi)ui ∈ Hi, and it follows that the sum

H1 +H2 + · · ·+Hm

can not be a direct sum. This contradiction proves n ≥ m. The proof of
m ≥ n is analogous.

It remains to prove the uniqueness of the decomposition of finitely gen-
erated abelian groups. Let G be a finitely generated abelian group.

By a decomposition of G we mean

G = G1 ⊕G2 ⊕ · · · ⊕Gm,

where each Gi is a cyclic subgroup of G, and for each index i < m either
order Gi divides order Gi+1 or Gi+1 is infinite. Let

G = H1 ⊕H2 ⊕ · · · ⊕Hn,

where each Hi is a cyclic subgroup of G, and for each index i < n either order
Hi divides order Hi+1 or Hi+1 is infinite. Let s be the largest index for which
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Gs is finite and let t be the largest index for which Ht is finite. Let P denote
the subgroup composed of all the elements of finite order in G. Clearly

P = G1 ⊕G2 ⊕ · · · ⊕Gs = H1 ⊕H2 ⊕ · · · ⊕Ht

and P is a finite group. By the Theorem s = t and order Gi = order Hi for
i = 1, 2, . . . , s. For the quotient group G/P it is clear that

G/P = Gs+1 ⊕ · · · ⊕Gm = Ht+1 ⊕ · · · ⊕Hn,

By the Lemma, m− s = n− t. But s = t, and it follows that m = n.
We hope these arguments are of some use in University teaching.

V.6 Salad Days

We get a glimpse of me in my salad days in S. Cater “An elementary devel-
opment of the Jordan Canonical Form,” Amer. Math. Monthly 69(5), May
1962, pp. 391-393.

We gave another argument there in which the underlying field is alge-
braically closed and we did not use determinants. At the time (circa 1962) it
would have been very difficult to find a proof without determinants in print.
I suppose this state of affairs is different today.

V.7 On Lp-spaces where 0 < p < 1

Let p be a real number, 0 < p < 1, and let Lp denote the family of all

functions f on [0, 1] for which
∫ 1

0
|f |p < ∞, where two such functions are

regarded as the same if they differ only on a set of measure zero. Put

ζ(f, g) =

∫ 1

0

|f − g|p.

It is shown in M. M. Day “The spaces Lp where 0 < p < 1,” Bull. Amer.
Math. Soc. 46 (1940), pp. 816-823, that Lp is a real topological linear space
under the metric ζ that has no nonzero continuous linear functional. The
Radon-Nikodym theorem is central to his argument. In S. Cater “Note on
a theorem of Day, ” Amer. Math. Monthly 69(7), 1962, pp. 638-640, we
prove that there is no nonzero continuous linear functional on Lp using first
principles without the Radon-Wikodym Theorem.
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V.8 On sets where unilateral derivatives are

infinite

One of the classical results of real analysis is that the set of points where a real
function may have an infinite unilateral derivative necessarily has measure
zero. This can be improved as follows.

Theorem. For any real function F , the set of points x at which

lim
h→0+

|F (x+ h)− F (x)|/h =∞

has measure zero.
(Consult for example Chapter IX, Theorem (4.4) of S. Saks, “Theory of the
Integral, Second Revised Edition,” Dover, New York, 1964.)

However, this reference employs considerable machinery to prove the the-
orem. We can offer a relatively short proof from first principles. We did not
publish it, so we write it here.

We begin with a Lemma that is easy and straight-forward. We provide a
proof for completeness.

Lemma. Let F be a function on the compact interval [a, b] and let k be
a positive number. Let X be a subset of [a, b] such that for any x, y ∈ X,

|F (y)− F (x)|/|y − x| > k.

Then m(F (X)) ≥ km(X) where m denotes Lebesgue outer measure.
Proof. Let (Jn) denote a sequence of compact intervals that cover F (X) :

F (X) ⊂ ∪nJn.
For a particular index n, let x, y ∈ X∩F−1(Jn). Then |F (x)−F (y)|/k >

|x− y| and we deduce that

sup(X ∩ F−1(Jn))− inf(X ∩ F−1(Jn)) ≤ m(Jn)/k.

Define the compact interval

In = [inf(X ∩ F−1(JN)), sup(X ∩ F−1(Jn))].

It follows that X ⊂ ∪nIn and for any index n,

m(In) ≤ m(Jn)/k.
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We sum to obtain

m(X) ≤
∑
n

m(In) ≤
∑
n

m(Jn)/k.

The covering (Jn) of F (X) was arbitrary, so it follows that

m(X) ≤ m(F (X))/k.

Proof of the theorem.
The outer measures of an expanding sequence of sets converge to the outer

measure of their union. From this we deduce that there exists an interval
(c, d) such that m(X ∩ F−1(c, d) > 0. Put X1 = X ∩ F−1(c, d).

Then m(X1) > 0, and
F (X1) ⊂ (c, d) (1)

We deduce that there is a number u > 0 such that if x, y ∈ X1 and
|x − y| < u, then |F (x) − F (y)| > |x − y|. Cover X1 with finitely many
intervals of length less than u. It follows that there is an interval K with
m(K) < u and m(X1 ∩K) > 0. Put X2 = X1 ∩K. Then m(X2) > 0 and if
x, y ∈ X2, then

|F (x)− F (y)| > |x− y| (2)

It follows that there is a number v > 0 such that if x, y ∈ X2 and
|x− y| < v, then

|F (x)− F (y)|/|x− y| > 4(d− c)/m(X2).

Select a finite sequence (In) of mutually disjoint compact intervals of
length less than v such that∑

n

m(X2 ∩ In) > m(X2)/2. (3)

We deduce from (2) that the sets F (X2 ∩ In) have mutually disjoint
neighborhoods. But if A,B are sets with disjoint neighborhoods, then m(A∪
B) = m(A) +m(B). We deduce that

m(∪nF (X2 ∩ In)) =
∑
n

m(F (X2 ∩ In)). (4)

It follows from our Lemma and the definition of v, that for each index n,

m(F (X2 ∩ In)) ≥ m(x2 ∩ In) · 4(d− c)/m(X2). (5)

28



Thus from (3), (4) and (5) obtains

m(F (X2))

≥ m(∪nF (X2 ∩ In)) =
∑
n

m(F (X2 ∩ In))

≥
∑
n

m(X2 ∩ In) · 4(d− c)/m(X2)

= 4(d− c)
∑
n

m(X2 ∩ In)/m(X2)

≥ 2(d− c).

But X2 ⊂ X1, and it follows that m(F (X1)) ≥ 2(d− c), contrary to (1).
It is worth noting that F need not be continuous in this argument. We

hope that this work is of some use in University teaching.
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Chapter VI

Variety

VI.1 Foray into point-set topology

For a topological space X, let d(X) denote the smallest cardinal number
that any dense subset of X may have. For cardinal numbers k and λ, let
(Xk)(λ) denote the λ-box product of k copies of X. For cardinality k, let
k+ denote the smallest cardinal exceeding k, and let cf k denote {minα :
k is the sum of α cardinals less than k}. Now let d(X) ≥ 2 and let k and λ
be infinite cardinals with λ ≤ k+. In F. S. Cater, Paul Erdös, Fred Galvin,
“On the density of λ-box products,” General topology and Its Applications 9
(1978), pp. 307-312, we prove the relation cf (d((Xk)(λ))) ≥ cf λ under this
hypothesis.

Initially, I made up some failed problems on products of copies of the
doubleton space {0, 1} while playing around as I often do. Finally I got it
right. I wrote to Erdös who extended it to many more cardinal numbers. We
referred it to an expert in point-set topology and set theory who researched
the literature, added more material and made it ready for publication. Galvin
also used the work to answer a question posed by Comfort and Negrepontis
that was open at the time.

So what began as a small matter grew in to something larger. I am
happy to have had a hand in all this. In any case, we got a paper in the
Journal “Topology and Its Applications,” and the Erdös number of two of
the co-authors is one.
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VI.2 Certain nonconvex linear topological spaces

In S. Cater “On a class of metric linear spaces which are not locally convex,”
Math. Annalen 157 (1964), pp. 210-214, we constructed a nonconvex metric
linear space V that enjoys many properties proved for convex metric linear
spaces. For example,

1. Every continuous linear functional on V is bounded on V ,

2. Any bounded linear functional on any subspace of V can be extended
to a bounded linear functional on V .

VI.3 Linear functionals on certain linear topo-

logical spaces

In S. Cater “Continuous linear functionals on certain topological vector
spaces,” Pacific Journal of Mathematics 13(1) (1963), pp. 65-71, we used
certain functions φ to define certain linear topological spaces V such that
continuous linear functionals on V separate points in V if

lim
n→∞

inf n−1φ(n) > 0,

and continuous linear functionals on V do not separate points in V if

lim
n→∞

inf n−1φ(n) = 0.

VI.4 Foray into fields

If F is a (commutative) field, we let F (u) denote a simple transcendental
extension of F . We say that F is an SB field if F (u) is isomorphic to a
subfield of F but F (u) is not isomorphic to F . Thus F and F (u) are a
pair of nonisomorphic fields, each isomorphic to a subfield of the other. In
F. S. Cater “Note on a variation of the Schroeder Bernstein problem for
fields,” Czechoslovak Mathematical Journal, 52(127) (2002), pp. 717-720, we
prove that the field C of complex numbers is an SB field but the field R of
real numbers is not. However R contains many subfields that are SB fields.

For authors, we provided a handy reference for the proof that any un-
countable algebraically closed field in an SB field. This may have been
difficult to find elsewhere in the literature at the time.
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VI.5 Collectionwise normal spaces

We provided “A simple proof that a linearly ordered space is hereditarily and
completely collectionwise normal,” Rocky Mountain Journal of Mathematics
36(4), 2006, pp. 1149-1152,

The central idea I devised for normality around 1955-1956 when I finished
college and started graduate school at the University of Southern California.
I had no thought of publishing at that time (I was busy making my grades
in classes, not all in Mathematics).

They allowed me to give a colloquium lecture at USC on it. I will never
forget that curious experience – I may have been the youngest person present.
There may also have been some reaction to the fact that I looked even younger
than I was.

More recently, I wrote the paper mentioned above for closure.
Compare with Lynn A. Steen, “A direct proof that a linearly ordered

space is hereditarily collectionwise normal,” Proc. Amer. Math. Soc. 24
(1970), pp. 727-728.

VI.6 On real functions of two variables

Everyone should know the standard example of a function of 2 variables with
unequal mixed partial derivatives at a point. Put f(x, y) = xy(x2−y2)/(x2+
y2) for (x, y) 6= (0, 0), and f(0, 0) = 0. (See for example, R. Courant, Dif-
ferential and Integral Calculus, volume II, Blackie & Son, Limited, London,
1936, fine print, p. 57.)

But by a standard theorem, if one of the mixed partial derivatives is
continuous at a point, then it must equal the other mixed partial derivative
there.

Now we look for global generalizations of this result. Let f be a continu-
ously differentiable function of 2 variables, on R2, and let the mixed partial
fxy exit everywhere. For fixed u and v and positive index n, put

Fn(u, v) = n[fx(u, v + n−1)− fx(u, v)].

Then Fn(u, v) is a continuous function of (u, v), and

lim
n→∞

Fn(u, v) = fxy(u, v).
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By Osgood’s Theorem, it follows that fxy is continuous at each point
of a residual subset of the complete metric space R2. Consult for example,
Karl Stromberg, An Introduction to Classical Real Analysis, Wadsworth,
Belmont, 1981, p. 120.

By the standard theorem fyx exists and fyx = fxy on a residual set of
points. (See Courant, idem. pp. 56-57.) For variations on this global result,
see F. S. Cater “Changing the order of partial differentiation,” Real analysis
Exchange 14(2), (1988-1989) pp. 513-516. Particularly Theorem 3.

VI.7 A variation on T1-functions

A continuous real valued function f on an interval I is called a T1-function
on I if almost every real value is assumed by f at most a finite number of
times. (See S. Saks, Theory of the Integral, Second Revised Edition, Dover,
New York 1964. p. 277.)

It follows that the continuous function f is T1 on I if and only if the set of
all values assumed by f at points where f has no derivative, finite or infinite,
be a set of measure zero. (See Saks, idem. p. 278.)

One wonders what can be said when f assumes at most countably many
values an infinite number of times. In F. S. Cater “Functions that nearly
preserve Gδ-sets,” Real Analysis Exchange 13(1), 1987-1988, pp. 204-213,
we prove that a continuous function f on an interval I assumes at most
countably many values infinitely many times on I if and only if for each
Gδ-set S ⊂ I, f(S) is the union of a Gδ-set with a countable set.

VI.8 Functions having equal ranges

In Lemmas 1, 2, 3, 4 and 5 of F. S. Cater, “Comparing the ranges of con-
tinuous functions,” Real Analysis Exchange 17(1), 1991-1992, pp. 426-430,
we proved: Let f and g be continuous functions on the interval [0, 1] with
f(0) = g(0) = 0. For each subinterval I of [0, 1], let the intervals f(I) and
g(I) have the same length. Then either f + g is identically zero on [0, 1] or
f − g is identically zero on [0, 1].

At first I did not believe this, and I was looking for a counterexample.
But when I could not find one I became suspicious.
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Many direct assaults on the proof of this result turn out to be faulty. I
believe it is harder than it looks.

VI.9 Foray into ring theory

We say that a commutative ring R is an Artinian ring if any contracting
sequence of ideals I1 ⊃ I2 ⊂ I3 ⊃ . . . must terminate: that is, Ik = Ik+1 =
Ik+2 = . . . for some index k. We say that a commutative ring R is almost
Artinian if for some index k,

RkIk ⊂ ∩nIn.

Of course R is almost Artinian if R is Artinian.
If R is a commutative ring with identity, then R is an Artinian ring if

and only if R is an almost Artinian ring. Clearly a nilpotent commutative
ring must be an almost Artinian ring.

In theorem 3 of F. S. Cater, “Modified chain conditions for rings without
identity,” The Yokohama Mathematical Journal, vol XXVII, no. 1, 1979, pp.
1-22, we proved that a commutative ring R is an almost Artinian ring if and
only if R is the direct sum of an Artinian ring with identity and a nilpotent
ring.

We also discussed related results for noncommutative rings there.

VI.10 Mappings into sets of measure zero

Let g be a function of bounded variation on [0, 1] and for any indices i and
n, 0 < i ≤ 2n, let Jin denote the interval

Jin = [(i− 1)2−n, i2−n].

Let G denote the total variation function, G(u) = total variation of g(x)
on the interval [0, u].

In Lemma 2 of F. S. Cater, “Mappings into sets of measure zero,” Rocky
Mountain Journal of Mathematics 16(1), Winter, 1986,
we proved that

m(G(S)) = lim
n→∞

2n∑
i=1

m(g(Jin ∩ S))
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where m denotes Lebeague outer measure and S is any subset of [0, 1].
Elsewhere in the paper we made some general comments aboutN -functions,

absolutely continuous functions, singular functions and saltus functions.
While an undergraduate student in the early 1950s I began studying saltus

functions on my own, a manifestation of my early interest in real variables.

VI.11 On upper and lower integrals

In F. S. Cater “Upper and lower generalized Riemann integrals,” Real Anal-
ysis Exchange 16 (1990-1991), pp. 215-237, we defined upper and lower
integrals that serve much the same purpose for the Henstock integral that
the Darboux upper and lower integrals serve for the Riemann integral.

In the mid 1950s when I was a student, I was trying to define an integral
with many of the properties of the Henstock integral, but nothing seemed to
work. I played with it for some time, but the essential notion of a “gauge”
eluded me. Needless to say, I regret missing it.

VI.12 On closed subsets of uncountable closed

sets

In this Item we prove the following Theorem.
Theorem. Let X be an uncountable complete separable metric space.

Then X has an uncountable complete subset W enjoying the following prop-
erty: For any ε > 0, W can be covered by finitely many balls the sum of
whose radii is less than ε.

A proof of our Theorem could be messy, but we will provide a systematic
solution. The trouble is two-fold. If we select the points in W such that
the Property is satisfied, will W be an uncountable complete set? But if we
construct W by discarding points in X to form a set large enough to be an
uncountable complete set, will W satisfy the Property?

Proof of the Theorem.
Let X0 denote the set of points x in X every neighborhood of which meets

X in uncountably many points. Clearly X0 is a closed subset of X, and hence
is a complete subset of X. Now X is a separable metric space and therefore
has a countable basis. It follows that the set X − X0 is an open countable
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subset of X, so X0 is an uncountable set. We can (and do) assume, without
loss of generality, that X has no isolated point.

Let S denote the family of all finite sequences of 1s and 2s. For s ∈ S
let “length s” denote the number of entries in s. We will use inductive
construction on length s to define a closed ball Us in X centered at a point
xs in X having radius less than 3−(length) as follows.

Choose disjoint closed balls U1 and U2 centered at points x! and x2 which
have radius less than 1/3. Now assume that mutually distinct closed balls Us
have been selected for all sequences s in S of length ≤ w. Let s be a sequence
of length w. Choose disjoint closed balls Us1 and Us2 of radii less than 3−w−1

with Us1 ⊂ Us and Us2 ⊂ Us. Let xs1 and xs2 denote the respective centers
of the balls Us1 and Us2.

By inductive construction all the balls with subscripts in S have been
chosen. For each n let Vn denote the union of all the balls U that have
subscripts of length n. Then Vn is a closed subset of X.

Now let t be an infinite sequence of 1s and 2s. Associate with t the Cauchy
sequence (yn) where yn denotes the center of the ball whose subscript is the
first n entries of t. But X is complete, so (yn) must converge.

Let wt denote the limit of (yn). By construction, wt must lie in the balls
just mentioned, and

wt ∈ ∩nVn.
For any two different sequences t1 and t2, the limits wt1 and wt2 lie in

disjoint closed balls and wt1 6= wt2 . Thus ∩nVn contains at least as many
points as there are sequences t. It follows that ∩nVn is uncountable. Put

W = ∩nVn.

For any index n, Vn is the union of 2n balls (covering W ) each of whose
radius is less than 3−n. The sum of these radii is less than

2n(3−n) = (2/3)n.

Of course W is complete because each Vn is closed and X is complete.

We conclude with a Corollary that was mentioned for R back in Item
III(6).

Corollary. Let X be a closed uncountable subset of the Euclidean space
Rk (k ≥ 1). Then X contains a closed uncountable subset W with measure
zero.
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Proof. Any ball of radius r in Rk can be enclosed in a box with edge 2r.
The measure of this box is (2r)k. Let 0 < ε < 1. In our Theorem, W was
covered with balls the sum of whose radii was less than ε. It follows that
m(W ) <

∑
j 2krj

k < 2k(
∑
rj)

k < 2kεk < 2kε.
But ε was arbitrary, so m(W ) = 0.
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Postscript

In recent decades there has been a resurgence of research in what is called
“real variables”, or “real functions” or “real analysis.” That this field is
massive is suggested, for example, by the book “Real functions – current
topics” by Vasily Ene, Springer, New York, 1995. That this field is active
is suggested by issues of the Journal, “Real analysis Exchange”, Michigan
State University Press.

My work has been primarily in real variables, though not entirely. I did
think of a few other things.

You may have noticed there was an emphasis here on nowhere differen-
tiable functions. This is appropriate because my academic lineage goes back
to Karl Weierstrass.
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